Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dechlorination of PCBs in the rhizosphere of switchgrass and poplar.

Identifieur interne : 002742 ( Main/Exploration ); précédent : 002741; suivant : 002743

Dechlorination of PCBs in the rhizosphere of switchgrass and poplar.

Auteurs : Richard E. Meggo [États-Unis] ; Jerald L. Schnoor ; Dingfei Hu

Source :

RBID : pubmed:23603468

Descripteurs français

English descriptors

Abstract

Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products.

DOI: 10.1016/j.envpol.2013.02.035
PubMed: 23603468
PubMed Central: PMC4294558


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dechlorination of PCBs in the rhizosphere of switchgrass and poplar.</title>
<author>
<name sortKey="Meggo, Richard E" sort="Meggo, Richard E" uniqKey="Meggo R" first="Richard E" last="Meggo">Richard E. Meggo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, IA 52242, USA. richard-meggo@uiowa.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, IA 52242</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Iowa City</settlement>
</placeName>
<orgName type="university">Université de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
<author>
<name sortKey="Hu, Dingfei" sort="Hu, Dingfei" uniqKey="Hu D" first="Dingfei" last="Hu">Dingfei Hu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23603468</idno>
<idno type="pmid">23603468</idno>
<idno type="doi">10.1016/j.envpol.2013.02.035</idno>
<idno type="pmc">PMC4294558</idno>
<idno type="wicri:Area/Main/Corpus">002627</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002627</idno>
<idno type="wicri:Area/Main/Curation">002627</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002627</idno>
<idno type="wicri:Area/Main/Exploration">002627</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dechlorination of PCBs in the rhizosphere of switchgrass and poplar.</title>
<author>
<name sortKey="Meggo, Richard E" sort="Meggo, Richard E" uniqKey="Meggo R" first="Richard E" last="Meggo">Richard E. Meggo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, IA 52242, USA. richard-meggo@uiowa.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, IA 52242</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Iowa City</settlement>
</placeName>
<orgName type="university">Université de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
<author>
<name sortKey="Hu, Dingfei" sort="Hu, Dingfei" uniqKey="Hu D" first="Dingfei" last="Hu">Dingfei Hu</name>
</author>
</analytic>
<series>
<title level="j">Environmental pollution (Barking, Essex : 1987)</title>
<idno type="eISSN">1873-6424</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biotransformation (MeSH)</term>
<term>Halogenation (MeSH)</term>
<term>Panicum (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Polychlorinated Biphenyls (analysis)</term>
<term>Polychlorinated Biphenyls (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Rhizosphere (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Soil Pollutants (analysis)</term>
<term>Soil Pollutants (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biotransformation (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Halogénation (MeSH)</term>
<term>Panicum (métabolisme)</term>
<term>Polluants du sol (analyse)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Polychlorobiphényles (analyse)</term>
<term>Polychlorobiphényles (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Racines de plante (métabolisme)</term>
<term>Rhizosphère (MeSH)</term>
<term>Sol (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Polychlorinated Biphenyls</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Polluants du sol</term>
<term>Polychlorobiphényles</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Panicum</term>
<term>Plant Roots</term>
<term>Polychlorinated Biphenyls</term>
<term>Populus</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Panicum</term>
<term>Polluants du sol</term>
<term>Polychlorobiphényles</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Biotransformation</term>
<term>Halogenation</term>
<term>Rhizosphere</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biotransformation</term>
<term>Dépollution biologique de l'environnement</term>
<term>Halogénation</term>
<term>Rhizosphère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23603468</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-6424</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>178</Volume>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Environmental pollution (Barking, Essex : 1987)</Title>
<ISOAbbreviation>Environ Pollut</ISOAbbreviation>
</Journal>
<ArticleTitle>Dechlorination of PCBs in the rhizosphere of switchgrass and poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>312-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.envpol.2013.02.035</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0269-7491(13)00128-0</ELocationID>
<Abstract>
<AbstractText>Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products.</AbstractText>
<CopyrightInformation>Copyright © 2013 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meggo</LastName>
<ForeName>Richard E</ForeName>
<Initials>RE</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, IA 52242, USA. richard-meggo@uiowa.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schnoor</LastName>
<ForeName>Jerald L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Dingfei</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P42 ES013661</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P42ES13661</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Environ Pollut</MedlineTA>
<NlmUniqueID>8804476</NlmUniqueID>
<ISSNLinking>0269-7491</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>DFC2HB4I0K</RegistryNumber>
<NameOfSubstance UI="D011078">Polychlorinated Biphenyls</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001711" MajorTopicYN="N">Biotransformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054879" MajorTopicYN="N">Halogenation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008897" MajorTopicYN="N">Panicum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011078" MajorTopicYN="N">Polychlorinated Biphenyls</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23603468</ArticleId>
<ArticleId IdType="pii">S0269-7491(13)00128-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.envpol.2013.02.035</ArticleId>
<ArticleId IdType="pmc">PMC4294558</ArticleId>
<ArticleId IdType="mid">NIHMS470721</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chemosphere. 2010 Sep;81(4):523-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2010 Nov;36(8):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19716603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1986 Apr;51(4):761-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3085588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2011 Nov;18(9):1536-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21559906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Apr;73(8):2513-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17308182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Apr 1;36(7):1579-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11999069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 1999 Oct;39(9):1445-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10481246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2006;8(3):199-221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17120525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Dec;57(12):3418-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1785918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2009 Oct 1;43(19):7503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19848168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2003 Mar;21(3):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12628369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2007 Mar 1;374(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17258285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 May;73(9):3009-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2011 Jun;84(2):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21596420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 May;53(5):1094-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3111365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2008 Nov;73(10):1608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18793792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2003 Jan;50(4):537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12685753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jul;75(13):4516-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2003 Oct;53(2):101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2006;8(1):63-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16615308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2005 Apr;67(2):170-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15614564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2008 Nov 1;405(1-3):14-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Atmos Environ (1994). 2010 Apr;44(12):1550-1557</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21918637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2003 Sep;22(9):1998-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12959523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 1995 Jul 1;29(7):318A-23A</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22667744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2004 Aug;30(6):799-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15120198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2006 Mar;17(2):121-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16477348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Jan 1;36(1):100-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11817368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Apr;72(4):2331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2008;62:253-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18729735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 1979 Oct;23(3):412-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">117860</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Iowa City</li>
</settlement>
<orgName>
<li>Université de l'Iowa</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Hu, Dingfei" sort="Hu, Dingfei" uniqKey="Hu D" first="Dingfei" last="Hu">Dingfei Hu</name>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</noCountry>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Meggo, Richard E" sort="Meggo, Richard E" uniqKey="Meggo R" first="Richard E" last="Meggo">Richard E. Meggo</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002742 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002742 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23603468
   |texte=   Dechlorination of PCBs in the rhizosphere of switchgrass and poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23603468" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020